MATHEMATICS METHODS

MAWA Semester 2 (Units 3 and 4) Examination 2016

Calculator-free

Marking Key

© MAWA, 2016

Licence Agreement

This examination is Copyright but may be freely used within the school that purchases this licence.

- The items that are contained in this examination are to be used solely in the school for which they are purchased.
- They are not to be shared in any manner with a school which has not purchased their own licence.
- The items and the solutions/marking keys are to be kept confidentially and not copied or made available to anyone who is not a teacher at the school. Teachers may give feedback to students in the form of showing them how the work is marked but students are not to retain a copy of the paper or marking guide until the agreed release date stipulated in the purchasing agreement/licence.

The release date for this exam and marking scheme is

the end of week 1 of term 4, 2016

(54 Marks)

Question 1(a)

Solution	
$\ln m = \frac{3}{2} \Longrightarrow m = e^{\frac{3}{2}}$	
Marking key/mathematical behaviours	Marks
identifies correct base	1
determines correct power	1

Question 1(b)

Solution	
$\log[(m+3)m] = 1$	
$(m+3)m = 10^1$	
$m^2 + 3m - 10 = 0$	
(m+5)(m-2) = 0	
m = -5 or 2 but since m has to be greater than zero, $m = 2$ is the only solution.	
Marking key/mathematical behaviours	Marks
 applies logarithmic rule for a product correctly 	1
recognises base 10	1
creates equation with correct trinomial	1
 solves equation correctly giving the correct value of m 	1

Question 2(a)(i)

Solution	
$\frac{dy}{dx} = \frac{(6x^4 - x^3 + e)(4e^x) - (4e^x)(24x^3 - 3x^2)}{(4x^2 - 3x^2)}$	
$dx = (6x^4 - x^3 + e)^2$	
Marking key/mathematical behaviours	Marks
 differentiates the 1st term on numerator correctly 	1
 differentiates the 2nd term on numerator correctly 	1
squares factor on denominator	1

Question 2(a)(ii) Solution

$$\frac{dy}{dx} = \frac{d}{dx} [\ln(5x^3 + 3) - \ln(\sin(x))]$$

= $\frac{d}{dx} [\ln(5x^3 + 3)] - \frac{d}{dx} [\ln(\sin(x))]$
= $\frac{15x^2}{(5x^3 + 3)} - \frac{\cos(x)}{\sin(x)}$

Marking key/mathematical behaviours	Marks
applies correctly logarithmic rule for quotients	1
differentiates correctly 1st term	1
differentiates correctly 2nd term	1

Question 2(b)

Solution	
Let $u = x^2 - \cos(x) \Rightarrow \frac{du}{dx} = 2x + \sin(x)$ and $\frac{dy}{du} = \frac{e^u}{2}$	
$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx} = \frac{e^u}{2} \times (2x + \sin(x)) = \frac{e^{x^2 - \cos(x)}}{2} (2x + \sin(x))$	
Marking key/mathematical behaviours	Marks
 differentiates correctly to determine1st factor in chain rule 	1
 differentiates correctly to determine 2nd factor in chain rule 	1
• expresses $\frac{dy}{dx}$ in terms of x	1

Question 3(a)

Solution	
Discrete random variable	
Marking key/mathematical behaviours	Marks
determines correct category	1

Question 3(b)

Question 3(b)	
Solution	
Non-random variable	
Marking key/mathematical behaviours	Marks
determines correct category	1

Question 3(c)

Solution	
Continuous random variable	
Marking key/mathematical behaviours	Marks
determines correct category	1

Question 4

Solution	
$k \int_{0}^{1} x - \frac{x^{3}}{3} dx = 1$	
$k \left[\frac{x^2}{2} - \frac{x^4}{12} \right]_0^1 = 1$	
$k\left[\frac{1}{2} - \frac{1}{12}\right] = 1 \Rightarrow k = \frac{12}{5}$	
Marking key/mathematical behaviours	Marks
 sets up integral and equates to one 	1
integrates correctly	1
evaluates integral correctly	1
• calculates the value of k	1

Question 5

Solution	
$p(1-p) = \left(\frac{\sqrt{3}}{4}\right)^2 = \frac{3}{16}$	
$16p^2 - 16p + 3 = 0$	
$(4\pi - 1)(4\pi - 2) = 0 \implies \pi = \frac{1}{2} \operatorname{cr} \pi = \frac{3}{2}$	
$(4p-1)(4p-3) = 0 \implies p = \frac{1}{4} \text{ or } p = \frac{1}{4}$	
Marking key/mathematical behaviours	Marks
 sets up equation using variance of a Bernoulli distribution 	1
derives quadratic equation	1
factorises trinomial	1
• solves correctly for <i>p</i>	1

CALCULATOR-FREE MARKING KEY

Question 6(a)

Solution	
Function is valid for $x > -3$	
Marking key/mathematical behaviours	Marks
 correctly states the values of x for which the function is valid 	1

Question 6(b)

Solution	
$\frac{dy}{dx} = \frac{2}{2x+6} = 4 \Longrightarrow \frac{2x+6}{2} = \frac{1}{4} \Longrightarrow x+3 = \frac{1}{4} \Longrightarrow x = -2.75$	
Marking key/mathematical behaviours	Marks
differentiates correctly	1
solves equation correctly	1

Question 7(a)

Solution						
У	0	1	2	3	4	
P(Y=y)	0	k	4k	9k	16k	
Marking key/ma	thematical be	haviours		•	•	Marks
correctly	y completes ty	vo values				1
correctly completes 4 values				1		

Question 7(b)

Solution	
k + 4k + 9k + 16k = 1	
$30k = 1 \implies k = \frac{1}{30}$	
Marking key/mathematical behaviours	Marks
sums probabilities equal to one	1
correctly solves equation for k	1

Question 8

Solution	
$f(x) = \int f'(x) dx$	
$=\int 2xe^{3x^2-1}dx$	
$=\frac{1}{3}e^{3x^2-1}+c$	
since $f(0) = 0$:	
$0 = \frac{1}{3}e^{-1} + c$	
$c = -\frac{1}{3e}$	
$f(x) = \frac{1}{3}e^{3x^2 - 1} - \frac{1}{3e}$	
Marking key/mathematical behaviours	Marks
determines indefinite integral	1
 substitutes initial conditions to calculate the constant c 	1
 states f(x) 	1

Question 9 (a)(i)

Solution	
$\hat{p} = \frac{20}{100} = \frac{1}{5}$	
Marking key/mathematical behaviours	Marks
determines the proportion	1

Question 9(a)(ii)

Solution	
$E = 2 \times \sqrt{\frac{\frac{1}{5}(1 - \frac{1}{5})}{100}}$	
$= 2 \times \sqrt{\frac{4}{2500}}$	
$=2\times\frac{2}{50}$	
= 0.08	
95% CI is (0.12,0.28)	
Marking key/mathematical behaviours	Marks
 substitutes values for z, n and p 	1
simplifies square root	1
simplifies E	1
states interval	1

Question 9(b)

Solution	
$E = 1 \times \sqrt{\frac{m(1-m)}{n_1}}$	
68% CI is $(m - \sqrt{\frac{m(1-m)}{n_1}}, m + \sqrt{\frac{m(1-m)}{n_1}})$	
Marking key/mathematical behaviours	Marks
determines E	1
states confidence interval.	1

Question 9(c)(i)

Solution	
n_2 is larger than n_1	
To increase confidence a larger interval is required for a stable sample size. Increasing	g n reduces
the standard error and thus the interval can remain the same.	
Marking key/mathematical behaviours	Marks
 states n₂ is larger with reason 	1
states correct reason	1

Question 9(c)(ii)

Solution	
$E_1 = 1 \times \sqrt{\frac{m(1-m)}{n_1}}$	
$E_2 = 1.5 \times \sqrt{\frac{m(1-m)}{n_2}}$	
Same interval so $E_1 = E_2$	
$\sqrt{\frac{m(1-m)}{n_1}} = 1.5 \times \sqrt{\frac{m(1-m)}{n_2}}$	
$\frac{m(1-m)}{n_1} = (1.5)^2 \frac{m(1-m)}{n_2}$	
$\frac{n_2}{2} = 2.25$	
n_1	
$n_2 = 2.25n_1$	
Marking key/mathematical behaviours	Marks
 equates E₁ and E₂ 	1
 squares both sides 	1
states relationship	1

Question 10(a)

Question 10(b)

